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Abstract 
This study explores the mathematics of two different techniques that can be used to access the decryption 
key in RSA encryption including semi-prime factorization and a logarithmic method.  The study then 
presents a Python program, written by the author, that automates the calculations for either of the 
decryption techniques and also calculates the number of iterations required to determine the decryption 
key in either circumstance.  Most importantly, the program utilizes only values of the RSA encryption 
algorithm that would be made publicly available in actual circumstances to calculate the decryption key so 
as to mimic real-life occurrences with as much integrity and accuracy as possible.  
Keywords: RSA encryption, semi-prime factorization, decryption, Python

1. Introduction 
 RSA encryption was created in the 1970s as an 
asymmetric (public-key) form of cryptography that 
would replace the then-commonly utilized and 
weakening symmetric cryptography.1  In 
symmetric cryptography, in order to exchange 
secret messages, two individuals would either have 
to meet beforehand to exchange identical keys or 
run the risk of their keys being intercepted.2  In a 
simplified example of symmetric cryptography, 
suppose “Bob” wanted to send a secret message to 
“Alice.”  Alice and Bob would first have to meet 
each other to share identical keys that would be 
used for encryption and decryption, ensuring that 
each person ultimately possesses the same key. 
Using one of the identical keys, Bob could then 
encrypt his secret message and send it to Alice, 
who would then decrypt the message using the 
other identical key that she and Bob had 
exchanged beforehand.  If Bob and Alice cannot 
meet to share keys, then Bob would have to send 

the key that decrypts his encrypted message along 
with his encrypted message to Alice, running the 
risk that a third party could easily intercept both 
the encrypted message and key before it comes into 
Alice’s possession.   
 In 1970, James Ellis proposed a hypothetical 
idea in which secret messages could be exchanged 
between individuals without them having to meet 
beforehand to share identical keys, thereby 
eliminating dependence on the ever-weakening 
symmetric cryptography.3  The premise was 
simple:  if Bob wished to send a secret message to 
Alice, Alice could create a lock and a key that 
decrypted, or “unlocked’, that lock.  Alice could 
then send the open lock to Bob, who would 
proceed to encrypt, or “lock”, his secret message 
using the open lock.  Alice would retain possession 
of the key that decrypted the lock.  Bob would then 
send his encrypted message to Alice, who would 
decrypt it using the key that remained in her 
possession throughout the entire process.  Such is 
the conceptual idea behind asymmetric 
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cryptography; by preventing an initial exchange of 
keys, one avoids the risk of a third party 
intercepting the key used to decrypt the encrypted 
message.  

In 1973, Clifford Cocks invented a 
mathematical implementation of Ellis’ idea, which 
had remained classified for twenty-four years.4  
Later on in 1977, Ron Rivest, Adi Shamir, and 
Leonard Adleman created the equivalent of Cocks’ 
implementation of Ellis’ idea completely 
independently.5  The algorithm they created based 
on Ellis’ conceptual idea about asymmetric 
cryptography was henceforth known as RSA (each 
of the founders’ initials) encryption and is widely 
used today.  RSA has formidable strength; as of 
yet, the only device that is considered to be capable 
of breaking RSA is a quantum computer.6 

Rivest, Shamir, and Adleman’s algorithm 
consists of six values that correspond to either a 
public or private key.  The public key is released 
publicly and can be used by anyone to encrypt a 
message; the private key, on the other hand, is kept 
hidden by the “key generator” (the person who 
creates the public and private key values; the 
equivalent of “Alice” in the latter example above) 
and is used by the key generator to decrypt any 
encrypted message sent to him or her.  The six 
values generated by the key generator are denoted: 
P, Q, N, 𝜑𝜑N, E, and D.  P, Q, 𝜑𝜑N, and D belong 
to the private key and are kept secret by the key 
generator.  N and E belong to the public key and 
are released publicly. 

The key generator must generate values for P, 
Q, N, 𝜑𝜑N, E, and D.  The key generator must first 
choose two large prime numbers P and Q.  In real 
world utilizations of RSA encryption, these prime 
numbers are typically large, usually hundreds of 
digits long.  The key generator must then multiply 
these two prime numbers together to attain the 
value of N, that is, P x Q = N.  N is a semi-prime 
number, or the product of two prime numbers.  
Next, the key generator calculates the 𝜑𝜑 or “phi” of 
N.  The phi of a number outputs how many 
positive integers are less than that number that do 
not share any common factors greater than one 
with the number.  For example, to find the phi of 

nine, a key generator would list all of the integers 
less than nine but greater than or equal to one 
(eight, seven, six, five, four, three, two, one).  From 
this list, they would then evaluate which integers 
share common factors with nine that are greater 
than one.  Six and three both share common 
factors greater than one with nine while eight, 
seven, five, four, two, and one do not share any 
common factors greater than one with nine.  The 
phi of nine is six because there are six integers less 
than nine that do not share any common factors 
greater than one with nine.  Calculating the phi of 
N is straightforward for the key generator due to 
the fact that the phi function is multiplicative, 
meaning that: 

𝜑𝜑N = 𝜑𝜑P x 𝜑𝜑Q (equation 1) 
or the phi of N is equivalent to the phi of each of 
N’s factors multiplied together.  This property can 
be proved using the Chinese Remainder Theorem 
but such a proof is omitted in this paper.7  Thus, 
the key generator can calculate the phi of P and the 
phi of Q and multiply these two values together to 
attain the phi of N.  The phi of any prime number 
is simply one less than the original prime number 
because the only factors that prime numbers have 
are one and itself.8  For example, the phi of five (a 
prime number) is four because there are four 
positive integers less than five that do not share any 
common factors greater than one with five.  Thus, 
the phi of the prime number P is (P – 1) and the 
phi of the prime number Q is (Q – 1).  Thus, the 
phi of the semi-prime N is (P – 1)*(Q – 1).  To 
generate E, the key generator must pick an integer 
that satisfies the requirement: 1 < E < 𝜑𝜑N; E shares 
no common factors with 𝜑𝜑N.  Finally, to generate 
D, the key generator must pick an integer that 
satisfies the requirement:  

(E*D) mod 𝜑𝜑N = 1 (equation 2) 
The operation “mod” outputs the remainder of a 
division.  For example, 8 mod 6 = 2 because the 
remainder of the division eight divided by six is 
two. 

Once the key generator has generated values 
for P, Q, N, 𝜑𝜑N, E, and D, they must release the 
values of N and E (the public key values) to the 
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public but retain the values of P, Q, 𝜑𝜑N, and D 
(the private key values).  If a person (the “sender”; 
the equivalent of “Bob” in the latter example 
above) wishes to send a secret message to the key 
generator, they can use the values of N and E to 
encrypt their message using the expression: 
	!mod N, where M is the secret message to be 
encrypted.  The sender would then send this 
encrypted message 	!mod N (the result of which 
is known as “C”, for ciphertext message) to the key 
generator.  The key generator can then decrypt the 
encrypted message C by using the private key value 
of D through the expression: �"mod N.  The 
result of �"mod N yields the original message M.  
Thus, in summary:  

	!mod N = C (equation 3) 
and 

�"mod N = M (equation 4) 
with proof of correctness derived by Rivest, 
Shamir, and Adleman using Fermat’s Little 
Theorem in their publication. 

As can be seen, RSA encryption functions 
similarly to the simplified example of asymmetric 
encryption given earlier (Introduction, paragraph 
two).  Alice, the key generator, creates a public and 
private key containing the values of P, Q, N, 𝜑𝜑N, 
E, and D.  N and E function as the values that Bob 
uses to lock the open lock that Alice created and 
sent to him, while the values of P, Q, 𝜑𝜑N, and D 
function as the key that opens the lock once Bob 
locks it with his message and sends it to Alice. 

Although publicly releasing the values of N 
and E does not detract from the strength of 
asymmetric RSA encryption, it is integral that the 
values of P, Q, 𝜑𝜑N, and D remain hidden and can 
only be accessed by the key generator: this is 
because RSA encryption was built around two 
main assumptions that make it safe and acceptable 
to release the values of N and E publicly.  First, it 
is exceedingly time-consuming to calculate the 
decryption key (D) by factoring large semi-prime 
numbers. Second, it is exceedingly time-
consuming to calculate the decryption key (D) 
using properties of logarithms because of the 
discrete logarithm problem.  If the decryption key 

D was accessed by a person other than the key 
generator, then this person would be able to 
intercept secret encrypted messages meant for the 
key generator and decrypt them using the 
intercepted value of D.  In short, RSA is a secure 
cryptosystem because accessing the decryption key 
by semi-prime factorization or logarithmic 
properties both prove to be too time-consuming to 
be pursued realistically, at least until the advent of 
quantum computing.   

If a “message-interceptor” (the equivalent of a 
“hacker”) wants to calculate the value of the 
decryption key using only the publicly-available 
values of N and E, they have two options, with the 
first being semi-prime factorization.9  When semi-
prime factorization is used by a message-
interceptor in an attempt to gain access to the 
decryption key, the magnitude of the semi-prime 
number proves to be of paramount importance in 
preventing the message-interceptor from 
calculating the decryption key.  In the case of RSA 
encryption, the semi-prime number is N (the 
product of the two prime numbers P and Q), 
whose value is publicly available to the message-
interceptor.  The message-interceptor must factor 
the semi-prime number N into its constituent 
factors P and Q.  From there, the message-
interceptor can plug in the values of P and Q into 
the expression (P – 1)*(Q – 1) to find 𝜑𝜑N.  After 
having attained the value of 𝜑𝜑N, the message-
interceptor, knowing that (E*D) must equal 1 
more than 𝜑𝜑N in order to achieve a modular 
relationship with 1 as a remainder, can plug this 
value along with the public key value of E into 
equation 2 and solve for D.  For example, if E is 7 
and 𝜑𝜑N is 3120, then the formula would be: 7D 
mod 3120 = 1, and thus, 7D must equal 3121 for 
the relationship to work.  With this in mind, the 
message-interceptor can easily solve for D: 

7D = 3121 
D = 445.857143 . . .  

D, however, must be an integer value.  In order to 
satisfy this rule, the message-interceptor can look 
for other modular relationships that yield a 
remainder of 1.  For example, 6241 mod 6240 =1.  
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Similarly, 9361 mod 9360 = 1.  The message-
interceptor can keep on multiplying the value of 
3120 by increasing integers to achieve different 
modular relationships that will still yield 1 as a 
remainder until D is an integer value.  
Example:  

7D mod (3120*1) = 1; 7D = 3120*1 + 1; D = 
(3120*1 + 1)/7; D = decimal 

7D mod (3120*2) = 1; 7D = 3120*2 + 1; D = 
(3120*2 + 1)/7; D = decimal 

7D mod (3120*3) = 1; 7D = 3120*3 + 1; D = 
(3120*3 + 1)/7; D = decimal 

7D mod (3120*4) = 1; 7D = 3120*4 + 1; D = 
(3120*4 + 1)/7; D = integer 

Here, solving for D only requires 4 iterations.  The 
formula for solving for D simplifies to: 

D = �𝜑𝜑N*�𝜑𝜑NMultiplier + 1)/E (equation 5) 
where �𝜑𝜑NMultiplier” is a specific integer value 
that the message-interceptor multiplies 𝜑𝜑N by to 
achieve different modular relationships that yield 
1.  With knowledge of the publicly-available value 
of E as well as the value of 𝜑𝜑N, the message-
interceptor can easily calculate the value of the 
decryption key, D, having created one equation 
with only one unknown value.  However, one 
problem exists:  factoring N into its constituent 
factors P and Q becomes increasingly time-
consuming as N grows.  This is why large prime 
numbers had to be chosen by the key generator as 
values for P and Q.  The larger N is (the product 
of the already large values of P and Q), the more 
time it will take to factor it.  In RSA, the types of 
semi-prime numbers utilized are typically around 
600 digits long.  Semi-prime numbers of such 
magnitudes take a huge amount of time to factor 
using current technologies.  In fact, in 1978, 
Rivest, Shamir, and Adleman predicted that 
factoring a 500-digit semi-prime number would 
take approximately 4.2 x �����years to factor using 
the Schroeppel factoring algorithm.10  Therefore, 
due to the immense amount of time needed to 
factor N into its constituent factors P and Q, it is 
impractical for a message-interceptor to use semi-

prime factorization to calculate the decryption key, 
D.11   

The second option that the message-
interceptor has if he wishes to calculate the value 
of the decryption key using only the publicly 
available values of N and E is to use the properties 
of logarithms.  Recall that encrypting a message 
requires plugging a secret message M into the 
expression 	!mod N, and thus decrypting that 
message requires plugging in the result of 	!mod 
N (which is C) into the expression �"mod N to 
attain the original message M.  The message-
interceptor, like all others, has access to the public 
key values of N and E.  He can generate a secret 
integer message M and plug it into the expression 
	!mod N to attain the ciphertext/encrypted 
message C.  Then, they can plug the value of C 
along with the public key value of N into the 
expression �"mod N.  The message-interceptor 
knows that the result of �"mod N must equal his 
original message M (see equation 4).  The 
message-interceptor has knowledge of the value of 
N (a public value) as well as C and M, because he 
generated these values.  Therefore, the message-
interceptor has created an equation in which only 
one unknown, D, the decryption key, exists.  For 
example, if N is 143 and E is 7, and the message-
interceptor picks his secret message M to be 24, 
then the enciphered message would be ���mod 
143, or 106.  The message-interceptor can plug in 
the values of 143 (N), 24 (M) and 106 (C) into 
equation 4, yielding ���"mod 143 = 24, and 
subsequently solve for D.  Knowing that ���" 
must equal to 143 + 24, or 167, for the above 
equation to work due to modular arithmetic (167 
mod 143 = 24), the message-interceptor can set 
���" to 167.  Knowing that ���" = 167, the 
message-interceptor can easily solve for D using 
the properties of logarithms: 

���" = 167 
log ���" = log 167 

D (log 106) = log 167 
D = log 167/log 106 

D = 1.09747 . . . 
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However, D has the restriction that it must be an 
integer value, which the above value is not.  Thus, 
the message-interceptor needs to come up with 
another way to calculate D using this method.  The 
message-interceptor knows that 167 mod 143 = 
24, but there are other values that, when divided 
by each other, will yield a remainder of 24.  143 
multiplied by 2 is 286.  286 plus 24 is 310.  Thus, 
310 mod 286 = 24.  Similarly, 143 multiplied by 3 
is 429.  429 plus 24 is 453.  Thus, 453 mod 429 = 
24.  The message-interceptor can keep on 
multiplying the value of 143 by increasing integers 
to achieve different modular relationships that will 
still yield 24 as a remainder until D is an integer 
value. 
Example: 
���" mod (143*1) = 24; ���" = (143*1) + 24; 
log(���"� = log(143*1 +24); D = log(143*1 + 

24)/log(106); D = decimal 
���" mod (143*2) = 24; ���" = (143*2) + 24; 
log(���"� = log(143*2 +24); D = log(143*2 + 

24)/log(106); D = decimal 
���" mod (143*3) = 24; ���" = (143*3) + 24; 
log(���"� = log(143*3 +24); D = log(143*3 + 

24)/log(106); D = decimal 
The formula for solving for D in this way can be 
simplified to: 
D = log(N*NMultiplier + M)/log(C) (equation 6) 
where “NMultiplier” is the increasing integer by 
which the message-interceptor multiplies N to 
achieve different modular relationships that will 
still yield the secret message, M.  Even though the 
message-interceptor can keep on running this type 
of sequence to achieve an integer value for D, the 
amount of iterations it would take to finally attain 
an integer value for D is astronomical, making the 
logarithmic decryption key calculations just as 
impractical and time-consuming as semi-prime 
factorization.  The difficulty of calculating the 
exponent D in this way is known as the discrete 
logarithm problem, or the “RSA problem.” 

Decryption through semi-prime factorization 
and decryption through logarithmic properties are 
both processes that are referred to as “trapdoor 

one-way functions”.12  Trapdoor one-way 
functions are easy to compute in one direction but 
difficult to compute in the other direction unless 
special “trapdoor” information is known.  In the 
case of decryption through semi-prime 
factorization, Rivest, Shamir, and Aldeman 
realized that it was trivially easy to multiply two 
large prime numbers P and Q together yet 
infinitely more difficult and time-consuming to 
factor the resulting semi-prime number, N.  
Similarly, they realized that it was easy to calculate 
M in equation 4 given the values of C, N, and most 
importantly, D, but far more arduous to calculate 
the value of D in equation 4 given the values of C, 
N, and M.  These two utilizations of trapdoor one-
way functions in RSA encryption are what make it 
so formidably strong and currently unbreakable 
without a quantum computer.13 

In the case of decryption through either semi-
prime factorization or logarithmic properties, an 
immense number of iterations are required to 
finally attain the decryption key, D.  In the case of 
semi-prime factorization, if every integer less than 
the semi-prime number, N, and greater than or 
equal to two was tested to see if it divided evenly 
into N, the number of iterations required would be 
N – 2.  If N is a huge semi-prime number that is 
hundreds of digits long, the number of iterations 
required to factor N would be two subtracted from 
the huge semi-prime number. While it is true that 
not all the numbers less than N would have to be 
assessed if it was certain that N was semi-prime 
(because this would narrow the numbers that 
needed to be tested down to only prime numbers), 
if access to a large bank of prime numbers is not 
unattainable (as in this project), all integers greater 
than or equal to two and less than N would still 
have to be tested to see if they divide evenly into 
N, making the expression for the amount of 
iterations needed to factor N in this project N – 2.  
In the algorithm presented for factoring N in this 
manner, time complexity is O(N).  In the case of 
decryption through logarithmic properties, 
��("#$%)∗(����

�   iterations are required to acquire D.  
Because the formula for solving for D through 
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logarithmic techniques can be simplified to 
equation 6, where “NMultiplier” is the increasing 
integers the message-interceptor multiplies N by 
to achieve different modular relationships that will 
still yield the secret message, M, “NMultiplier” can 
be isolated and solved for to attain the number of 
iterations it would take to solve for D.  The 
following demonstrates the process of isolating 
“NMultiplier” from the equation D = 
log(N*NMultiplier + M)/log(C): 

D = log(N*NMultiplier + M)/log(C) 
D*[log(C)] = log(N*NMultiplier + M) 
���
��
���	��� = N*NMultiplier + M 
���
��
���	��� – M = N*NMultiplier 

NMultiplier = ����∗����(�)�������  (equation 7) 
By solving for “NMultiplier”, the number of 
iterations needed to calculate D through 
logarithmic techniques has been calculated to be 
����∗����(�)������

�  .  Because this program allows a 
maximum of one million iterations to compute D 
in this manner, the associated time complexity is 
less than O(1000000).   
 The purpose of this research study is to discuss 
the function of a program built using Python that 
calculates the decryption key using semi-prime 
factorization as well as the logarithmic method.  
Further, the program calculates the number of 
iterations required to calculate D using either of 
these methods, indicating the efficacy and 
advantageousness of using one method over the 
other in different circumstances.  This research 
study will delve into explaining the code written in 
the program and how it contributes to achieving 
the end result of decryption as well as the number 
of iterations derived necessary to calculate D using 
either of the aforementioned methods, being that 
of semi-prime factorization or logarithms. 
 
 
 

2. Materials 
2.1 Required Materials: 
 Python programming system installed on 
MacBook laptop or other personal computer, 
complete with IDLE and running module.  
Access to Python’s “math” module located in 
Python’s standard library. The module includes 
mathematical functions necessary to the operation 
of the program. 
2.1 Recommended Materials: 
 Access to a computational knowledge/answer 
engine like Wolfram Alpha used to initially verify 
the accuracy of the results obtained from the 
program.14  
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2. Methods/Procedures 

Figure 1. Code script 
 
 

3.1 The Code Behind Semi-Prime Factorization 
to Calculate D (Lines 1-47) 
3.1.1 Factoring N 
 In lines 3 – 9, the program asks for a semi-
prime input which it then sets to the variable N.  
The program is designed to test all integers less 
than N but greater than or equal to two to 
determine whether they divide evenly into N.  An 
integer is a factor of N if the remainder of N 
divided by said integer equals zero. The integers 
that do divide evenly into N are deemed to be 
factors of N and are appended to a list called 
“NFactorsList”.  
 In lines 10 – 20, the program forces another 
input to be given for N if the first input is not a 
semi-prime number.  If the length of NFactorsList 
is only four, this indicates that N is a semi-prime 
number because semi-prime numbers only have 
four factors: one, the semi-prime itself, and the 
two prime numbers multiplied together to attain 
the semi-prime number. 
 In lines 21 – 25, after ensuring a semi-prime 
input for N, the program sets the variables P and 
Q to the two prime numbers that N is divisible by. 
3.1.2 Factoring 𝜑𝜑N  
 In lines 26 – 27, the program sets the variable 
PhiN to (P – 1)*(Q – 1) based on the mathematics 
described in the introduction for the calculation of 
𝜑𝜑N.   
3.1.3 Generating a public key value for E 
 In lines 34 – 40, the program initializes a list 
called “PhiNFactorsList” that lists the factors of 
the value of 𝜑𝜑N by testing which integers are 
greater than two but less than 𝜑𝜑N and yield a 
remainder of zero when divided into 𝜑𝜑N. 
 In lines 41 – 42, the program initializes a list 
called “PrimesLessThan100List” which lists all of 
the prime numbers less than 100 and also 
initializes that variable E by setting it to a 
placeholder value of 1. 
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 In lines 43 – 49, the program generates a value 
for E, which must be greater than 1, less than 𝜑𝜑N, 
and share no common factors with 𝜑𝜑N.  The 
program cross-checks values in the 
PrimesLessThan100List against values in the 
PhiNFactorsList until it finds a value in the 
PrimesLessThan100List that is not in the 
PhiNFactorsList, which it then sets it to the 
variable E. By checking primes as possible values 
for E against the factors of 𝜑𝜑N, the program 
ensures that whatever value it picks for E shares no 
common factors with 𝜑𝜑N.   
3.1.4 Generating D  
 In lines 52 – 56, the program sets a variable 
called “PhiNMultiplier” to 1, which will act as 
𝜑𝜑NMultiplier in equation 5.  While D does not 
equal an integer solution, the program 
continuously adds 1 to the value of 
PhiNMultiplier.  When PhiNMultiplier iterates 
enough that it yields an integer value for D, the 
program sets D to �𝜑𝜑N*�𝜑𝜑NMultiplier + 1)/E, 
where 𝜑𝜑NMultiplier represents the number of 
iterations it took to yield an integer solution for D.   
3.2 The Code Behind Logarithmic Techniques to 
Calculate D (Lines 48 – 71) 
 In lines 61 – 62, the program asks for an 
integer input and sets it to the variable M.  It then 
encrypts M by raising it to the value of E, dividing 
the entire expression by N, and taking the modulus 
of the division, which is C, the ciphertext message. 
In lines 67 – 82, the program initializes a variable 
called “NMultiplier” to 1 which acts as 
NMultiplier in equation 6.  Because Python has a 
limited capacity for running large numbers of 
iterations, the program continuously adds 1 to 
NMultiplier until NMultiplier = 1000000 (the first 
million iterations) instead of until D is an integer.  
When NMultiplier = 1000000, although D might 
not be an integer, the program still cuts off at this 
point and prints that D takes more than one 
million iterations to calculate.  All non-integer 
numbers resulting from log(N*NMultiplier + 

M)/log(C) are appended to the list 
“NonIntegerDList” and stored.  
3.3 The Code Behind Iterations for Semi-Prime 
Factorization to Calculate D and Logarithmic 
Techniques to Calculate D (Lines 72 – 80) 
 In lines 86 – 89, the iterations for decryption 
using semi-prime factorization and for decryption 
using logarithmic techniques are both calculated 
using the expressions N – 2 and ��("#$%)∗(�����  , 
respectively (see introduction of derivation of 
iterations).  The program then prints the number 
of iterations needed in either case, allowing for 
quick comparison of either method’s effectiveness 
in different circumstances. 
4. Results 

Figure 2. Program yield 
 
 The creation of the Python code described on 
the previous pages (Figure 1) resulted in a program 
that, when run, yielded the above result (Figure 2).  
Lines 1 – 9 print each of the values necessary to 
calculate the decryption key, D, through semi-
prime factorization.  In line 2, the program asks for 
a semi-prime number input.  If a number that is 
not semi-prime is inputted, as in Figure 2 when 
1500 was inputted, the program asks for another 
semi-prime value instead, displaying the message 
“Your prior input was not a semi-prime number.  

14

0 DECRYPTION THROUGH SEMI-PRIME FACTORIZATION 

0 Enter a semi-prime number: 1500 
0 Your prior input was not a semi-prime number. Enter a semi-prime number: 1820 
G Your prior input was not a semi-prime number. Enter a semi-prime number: 143 
• p ■ 11 
• Q. 13 
Q Phi N • 120 
0 E • 7 
0 D • 103 

G) DECRYPTION THROUGH LOGARITHMS 

4D Enter a secret message to encrypt: 24 
G Secret message • 24 
0 Encrypted message • 106 
G, D • More than o million iterations to calculate 

fD HOW MANY ITERATIONS? 

G Iterations using semi-prime factorization ■ 141 
4D Iterations using logarithms • 2.8Z597349859519e+Z06 
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Enter a semi-prime number:” until a semi-prime 
value has been given.  When a semi-prime value is 
given, this number is factored into its constituent 
factors, P and Q, which are then printed.  𝜑𝜑N is 
then calculated by plugging P and Q into the 
expression (P – 1)*(Q – 1) and subsequently 
printed.  Once a public key value E is generated 
and printed, D is solved for in equation 2 and 
printed. Lines 10 – 14 print the necessary 
information to calculate D through logarithms.  In 
line 11, the program asks for an integer message 
M, prints M in line 12, prints C (the value of M, 
encrypted) in line 13, and prints D in line 14 by 
solving for it in equation 4.  However, in all the 
times that the program has been run, it has never 
been able to calculate D through logarithms due to 
the fact that it would take an incredible amount of 
iterations to do this.  Instead, the program prints, 
“D = more than a million iterations to calculate” if 
it cannot calculate D through logarithms in under 
a million iterations.  Finally, in lines 15 – 17, the 
program prints the number of iterations that the 
program needs to calculate D in either instance. 
On occasion, the program will experience an 
overflow error when it tries to calculate the 
iterations for decryption through logarithms 
because Python does not have the capacity for such 
huge calculations. 
 This project would be economically feasible to 
implement as it would not cost anything to 
download an app version of this program onto a 
mobile device once a graphical user interface has 
been created for all of the code that has been 
written. 

5. Discussion and Conclusions
The research study undertaken was largely

successful because it met all of the objectives 
defined in the introduction: to describe the 
mathematics of decryption techniques, to create a 
program capable of calculating the decryption key 
in RSA using two different methods and 
calculating the number of iterations required to 
accomplish this in either instance, and to explain 
the code written in the program and its roles in 

ultimately achieving the end result of decryption.  
The program has the capacity to calculate the 
decryption key through both semi-prime 
factorization and through the logarithmic method.  
That being said, the logarithmic method almost 
always takes too many iterations to feasibly 
calculate the decryption key because of the 
exponentiation operations involved.  However, the 
program is still theoretically capable of calculating 
the decryption key through the logarithmic 
method.  The program is also capable of 
calculating the number of iterations needed to 
calculate D through either method but will at 
times experience an overflow error if the number 
of iterations needed to calculate D through 
logarithmic techniques exceeds Python’s 
programming capacity.  If the code in this study 
can be replicated using more powerful and faster 
programs, it would be surmised that D would be 
calculated with more rapidity through the 
logarithmic technique and the program would not 
experience overflow errors.  When such errors 
occur, exception handling can be used to catch the 
errors using Python’s OverflowError.  Such an 
implementation is provided in the appendix.  
 Additionally, there are many other techniques 
in existence to factor large semi-prime numbers, 
though this program only makes use of one of the 
most rudimentary such techniques.  The quadratic 
sieve and the general number field sieve are two 
such integer factorization algorithms that far 
outstrip the technique presented in this research.15  
 Further, this program could have possible 
implementations in the future.  Because it is 
capable of calculating the number of iterations 
needed to obtain the decryption key through either 
semi-prime factorization or logarithms, the 
program could potentially be used as a starting 
point to create an entirely new study in which the 
efficacy of either decryption method is compared 
when certain variables like the length of the semi-
prime number N or the public exponent E are 
varied. 

15
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Appendix
 
     An implementation of the program in pseudocode 
is provided below in which exception handling is used 
to handle overflow errors.
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