
GSR Journal

Georgetown Scientific Research Journal

Volume 1 | Edition 2
July 31, 2021

Danya Adams
 ISSN 2767-6420

5

Danya Adams

 �

An Investigation Into the
Mathematics of Decryption

Techniques in RSA Encryption,
With an Implementation in Python

Sofia Flynn

Volume One
Edition Two
Spring 2021

GEORGETOWN SCIENTIFIC
RESEARCH JOURNAL

6

Georgetown	Scientific	Research	Journal	
	

An	Investigation	Into	the	Mathematics	of	Decryption	
Techniques	in	RSA	Encryption,	With	an	Implementation	
in	Python			
	
Sofia Flynn

Department of Mathematics, Georgetown University, Washington D.C.
E-mail: smf133@georgetown.edu
https://doi.org/10.48091/gsr.v1i2.18

Abstract
This study explores the mathematics of two different techniques that can be used to access the decryption
key in RSA encryption including semi-prime factorization and a logarithmic method. The study then
presents a Python program, written by the author, that automates the calculations for either of the
decryption techniques and also calculates the number of iterations required to determine the decryption
key in either circumstance. Most importantly, the program utilizes only values of the RSA encryption
algorithm that would be made publicly available in actual circumstances to calculate the decryption key so
as to mimic real-life occurrences with as much integrity and accuracy as possible.
Keywords: RSA encryption, semi-prime factorization, decryption, Python

1. Introduction
 RSA encryption was created in the 1970s as an
asymmetric (public-key) form of cryptography that
would replace the then-commonly utilized and
weakening symmetric cryptography.1 In
symmetric cryptography, in order to exchange
secret messages, two individuals would either have
to meet beforehand to exchange identical keys or
run the risk of their keys being intercepted.2 In a
simplified example of symmetric cryptography,
suppose “Bob” wanted to send a secret message to
“Alice.” Alice and Bob would first have to meet
each other to share identical keys that would be
used for encryption and decryption, ensuring that
each person ultimately possesses the same key.
Using one of the identical keys, Bob could then
encrypt his secret message and send it to Alice,
who would then decrypt the message using the
other identical key that she and Bob had
exchanged beforehand. If Bob and Alice cannot
meet to share keys, then Bob would have to send

the key that decrypts his encrypted message along
with his encrypted message to Alice, running the
risk that a third party could easily intercept both
the encrypted message and key before it comes into
Alice’s possession.
 In 1970, James Ellis proposed a hypothetical
idea in which secret messages could be exchanged
between individuals without them having to meet
beforehand to share identical keys, thereby
eliminating dependence on the ever-weakening
symmetric cryptography.3 The premise was
simple: if Bob wished to send a secret message to
Alice, Alice could create a lock and a key that
decrypted, or “unlocked’, that lock. Alice could
then send the open lock to Bob, who would
proceed to encrypt, or “lock”, his secret message
using the open lock. Alice would retain possession
of the key that decrypted the lock. Bob would then
send his encrypted message to Alice, who would
decrypt it using the key that remained in her
possession throughout the entire process. Such is
the conceptual idea behind asymmetric

7

Georgetown	Scientific	Research	Journal	

cryptography; by preventing an initial exchange of
keys, one avoids the risk of a third party
intercepting the key used to decrypt the encrypted
message.

In 1973, Clifford Cocks invented a
mathematical implementation of Ellis’ idea, which
had remained classified for twenty-four years.4
Later on in 1977, Ron Rivest, Adi Shamir, and
Leonard Adleman created the equivalent of Cocks’
implementation of Ellis’ idea completely
independently.5 The algorithm they created based
on Ellis’ conceptual idea about asymmetric
cryptography was henceforth known as RSA (each
of the founders’ initials) encryption and is widely
used today. RSA has formidable strength; as of
yet, the only device that is considered to be capable
of breaking RSA is a quantum computer.6

Rivest, Shamir, and Adleman’s algorithm
consists of six values that correspond to either a
public or private key. The public key is released
publicly and can be used by anyone to encrypt a
message; the private key, on the other hand, is kept
hidden by the “key generator” (the person who
creates the public and private key values; the
equivalent of “Alice” in the latter example above)
and is used by the key generator to decrypt any
encrypted message sent to him or her. The six
values generated by the key generator are denoted:
P, Q, N, 𝜑𝜑N, E, and D. P, Q, 𝜑𝜑N, and D belong
to the private key and are kept secret by the key
generator. N and E belong to the public key and
are released publicly.

The key generator must generate values for P,
Q, N, 𝜑𝜑N, E, and D. The key generator must first
choose two large prime numbers P and Q. In real
world utilizations of RSA encryption, these prime
numbers are typically large, usually hundreds of
digits long. The key generator must then multiply
these two prime numbers together to attain the
value of N, that is, P x Q = N. N is a semi-prime
number, or the product of two prime numbers.
Next, the key generator calculates the 𝜑𝜑 or “phi” of
N. The phi of a number outputs how many
positive integers are less than that number that do
not share any common factors greater than one
with the number. For example, to find the phi of

nine, a key generator would list all of the integers
less than nine but greater than or equal to one
(eight, seven, six, five, four, three, two, one). From
this list, they would then evaluate which integers
share common factors with nine that are greater
than one. Six and three both share common
factors greater than one with nine while eight,
seven, five, four, two, and one do not share any
common factors greater than one with nine. The
phi of nine is six because there are six integers less
than nine that do not share any common factors
greater than one with nine. Calculating the phi of
N is straightforward for the key generator due to
the fact that the phi function is multiplicative,
meaning that:

𝜑𝜑N = 𝜑𝜑P x 𝜑𝜑Q (equation 1)
or the phi of N is equivalent to the phi of each of
N’s factors multiplied together. This property can
be proved using the Chinese Remainder Theorem
but such a proof is omitted in this paper.7 Thus,
the key generator can calculate the phi of P and the
phi of Q and multiply these two values together to
attain the phi of N. The phi of any prime number
is simply one less than the original prime number
because the only factors that prime numbers have
are one and itself.8 For example, the phi of five (a
prime number) is four because there are four
positive integers less than five that do not share any
common factors greater than one with five. Thus,
the phi of the prime number P is (P – 1) and the
phi of the prime number Q is (Q – 1). Thus, the
phi of the semi-prime N is (P – 1)*(Q – 1). To
generate E, the key generator must pick an integer
that satisfies the requirement: 1 < E < 𝜑𝜑N; E shares
no common factors with 𝜑𝜑N. Finally, to generate
D, the key generator must pick an integer that
satisfies the requirement:

(E*D) mod 𝜑𝜑N = 1 (equation 2)
The operation “mod” outputs the remainder of a
division. For example, 8 mod 6 = 2 because the
remainder of the division eight divided by six is
two.

Once the key generator has generated values
for P, Q, N, 𝜑𝜑N, E, and D, they must release the
values of N and E (the public key values) to the

8

Georgetown	Scientific	Research	Journal	

public but retain the values of P, Q, 𝜑𝜑N, and D
(the private key values). If a person (the “sender”;
the equivalent of “Bob” in the latter example
above) wishes to send a secret message to the key
generator, they can use the values of N and E to
encrypt their message using the expression:
	!mod N, where M is the secret message to be
encrypted. The sender would then send this
encrypted message 	!mod N (the result of which
is known as “C”, for ciphertext message) to the key
generator. The key generator can then decrypt the
encrypted message C by using the private key value
of D through the expression: �"mod N. The
result of �"mod N yields the original message M.
Thus, in summary:

	!mod N = C (equation 3)
and

�"mod N = M (equation 4)
with proof of correctness derived by Rivest,
Shamir, and Adleman using Fermat’s Little
Theorem in their publication.

As can be seen, RSA encryption functions
similarly to the simplified example of asymmetric
encryption given earlier (Introduction, paragraph
two). Alice, the key generator, creates a public and
private key containing the values of P, Q, N, 𝜑𝜑N,
E, and D. N and E function as the values that Bob
uses to lock the open lock that Alice created and
sent to him, while the values of P, Q, 𝜑𝜑N, and D
function as the key that opens the lock once Bob
locks it with his message and sends it to Alice.

Although publicly releasing the values of N
and E does not detract from the strength of
asymmetric RSA encryption, it is integral that the
values of P, Q, 𝜑𝜑N, and D remain hidden and can
only be accessed by the key generator: this is
because RSA encryption was built around two
main assumptions that make it safe and acceptable
to release the values of N and E publicly. First, it
is exceedingly time-consuming to calculate the
decryption key (D) by factoring large semi-prime
numbers. Second, it is exceedingly time-
consuming to calculate the decryption key (D)
using properties of logarithms because of the
discrete logarithm problem. If the decryption key

D was accessed by a person other than the key
generator, then this person would be able to
intercept secret encrypted messages meant for the
key generator and decrypt them using the
intercepted value of D. In short, RSA is a secure
cryptosystem because accessing the decryption key
by semi-prime factorization or logarithmic
properties both prove to be too time-consuming to
be pursued realistically, at least until the advent of
quantum computing.

If a “message-interceptor” (the equivalent of a
“hacker”) wants to calculate the value of the
decryption key using only the publicly-available
values of N and E, they have two options, with the
first being semi-prime factorization.9 When semi-
prime factorization is used by a message-
interceptor in an attempt to gain access to the
decryption key, the magnitude of the semi-prime
number proves to be of paramount importance in
preventing the message-interceptor from
calculating the decryption key. In the case of RSA
encryption, the semi-prime number is N (the
product of the two prime numbers P and Q),
whose value is publicly available to the message-
interceptor. The message-interceptor must factor
the semi-prime number N into its constituent
factors P and Q. From there, the message-
interceptor can plug in the values of P and Q into
the expression (P – 1)*(Q – 1) to find 𝜑𝜑N. After
having attained the value of 𝜑𝜑N, the message-
interceptor, knowing that (E*D) must equal 1
more than 𝜑𝜑N in order to achieve a modular
relationship with 1 as a remainder, can plug this
value along with the public key value of E into
equation 2 and solve for D. For example, if E is 7
and 𝜑𝜑N is 3120, then the formula would be: 7D
mod 3120 = 1, and thus, 7D must equal 3121 for
the relationship to work. With this in mind, the
message-interceptor can easily solve for D:

7D = 3121
D = 445.857143 . . .

D, however, must be an integer value. In order to
satisfy this rule, the message-interceptor can look
for other modular relationships that yield a
remainder of 1. For example, 6241 mod 6240 =1.

9

Georgetown	Scientific	Research	Journal	

Similarly, 9361 mod 9360 = 1. The message-
interceptor can keep on multiplying the value of
3120 by increasing integers to achieve different
modular relationships that will still yield 1 as a
remainder until D is an integer value.
Example:

7D mod (3120*1) = 1; 7D = 3120*1 + 1; D =
(3120*1 + 1)/7; D = decimal

7D mod (3120*2) = 1; 7D = 3120*2 + 1; D =
(3120*2 + 1)/7; D = decimal

7D mod (3120*3) = 1; 7D = 3120*3 + 1; D =
(3120*3 + 1)/7; D = decimal

7D mod (3120*4) = 1; 7D = 3120*4 + 1; D =
(3120*4 + 1)/7; D = integer

Here, solving for D only requires 4 iterations. The
formula for solving for D simplifies to:

D = �𝜑𝜑N*�𝜑𝜑NMultiplier + 1)/E (equation 5)
where �𝜑𝜑NMultiplier” is a specific integer value
that the message-interceptor multiplies 𝜑𝜑N by to
achieve different modular relationships that yield
1. With knowledge of the publicly-available value
of E as well as the value of 𝜑𝜑N, the message-
interceptor can easily calculate the value of the
decryption key, D, having created one equation
with only one unknown value. However, one
problem exists: factoring N into its constituent
factors P and Q becomes increasingly time-
consuming as N grows. This is why large prime
numbers had to be chosen by the key generator as
values for P and Q. The larger N is (the product
of the already large values of P and Q), the more
time it will take to factor it. In RSA, the types of
semi-prime numbers utilized are typically around
600 digits long. Semi-prime numbers of such
magnitudes take a huge amount of time to factor
using current technologies. In fact, in 1978,
Rivest, Shamir, and Adleman predicted that
factoring a 500-digit semi-prime number would
take approximately 4.2 x �����years to factor using
the Schroeppel factoring algorithm.10 Therefore,
due to the immense amount of time needed to
factor N into its constituent factors P and Q, it is
impractical for a message-interceptor to use semi-

prime factorization to calculate the decryption key,
D.11

The second option that the message-
interceptor has if he wishes to calculate the value
of the decryption key using only the publicly
available values of N and E is to use the properties
of logarithms. Recall that encrypting a message
requires plugging a secret message M into the
expression 	!mod N, and thus decrypting that
message requires plugging in the result of 	!mod
N (which is C) into the expression �"mod N to
attain the original message M. The message-
interceptor, like all others, has access to the public
key values of N and E. He can generate a secret
integer message M and plug it into the expression
	!mod N to attain the ciphertext/encrypted
message C. Then, they can plug the value of C
along with the public key value of N into the
expression �"mod N. The message-interceptor
knows that the result of �"mod N must equal his
original message M (see equation 4). The
message-interceptor has knowledge of the value of
N (a public value) as well as C and M, because he
generated these values. Therefore, the message-
interceptor has created an equation in which only
one unknown, D, the decryption key, exists. For
example, if N is 143 and E is 7, and the message-
interceptor picks his secret message M to be 24,
then the enciphered message would be ���mod
143, or 106. The message-interceptor can plug in
the values of 143 (N), 24 (M) and 106 (C) into
equation 4, yielding ���"mod 143 = 24, and
subsequently solve for D. Knowing that ���"
must equal to 143 + 24, or 167, for the above
equation to work due to modular arithmetic (167
mod 143 = 24), the message-interceptor can set
���" to 167. Knowing that ���" = 167, the
message-interceptor can easily solve for D using
the properties of logarithms:

���" = 167
log ���" = log 167

D (log 106) = log 167
D = log 167/log 106

D = 1.09747 . . .

10

I I

I I

I I

I I

Georgetown	Scientific	Research	Journal	

However, D has the restriction that it must be an
integer value, which the above value is not. Thus,
the message-interceptor needs to come up with
another way to calculate D using this method. The
message-interceptor knows that 167 mod 143 =
24, but there are other values that, when divided
by each other, will yield a remainder of 24. 143
multiplied by 2 is 286. 286 plus 24 is 310. Thus,
310 mod 286 = 24. Similarly, 143 multiplied by 3
is 429. 429 plus 24 is 453. Thus, 453 mod 429 =
24. The message-interceptor can keep on
multiplying the value of 143 by increasing integers
to achieve different modular relationships that will
still yield 24 as a remainder until D is an integer
value.
Example:
���" mod (143*1) = 24; ���" = (143*1) + 24;
log(���"� = log(143*1 +24); D = log(143*1 +

24)/log(106); D = decimal
���" mod (143*2) = 24; ���" = (143*2) + 24;
log(���"� = log(143*2 +24); D = log(143*2 +

24)/log(106); D = decimal
���" mod (143*3) = 24; ���" = (143*3) + 24;
log(���"� = log(143*3 +24); D = log(143*3 +

24)/log(106); D = decimal
The formula for solving for D in this way can be
simplified to:
D = log(N*NMultiplier + M)/log(C) (equation 6)
where “NMultiplier” is the increasing integer by
which the message-interceptor multiplies N to
achieve different modular relationships that will
still yield the secret message, M. Even though the
message-interceptor can keep on running this type
of sequence to achieve an integer value for D, the
amount of iterations it would take to finally attain
an integer value for D is astronomical, making the
logarithmic decryption key calculations just as
impractical and time-consuming as semi-prime
factorization. The difficulty of calculating the
exponent D in this way is known as the discrete
logarithm problem, or the “RSA problem.”

Decryption through semi-prime factorization
and decryption through logarithmic properties are
both processes that are referred to as “trapdoor

one-way functions”.12 Trapdoor one-way
functions are easy to compute in one direction but
difficult to compute in the other direction unless
special “trapdoor” information is known. In the
case of decryption through semi-prime
factorization, Rivest, Shamir, and Aldeman
realized that it was trivially easy to multiply two
large prime numbers P and Q together yet
infinitely more difficult and time-consuming to
factor the resulting semi-prime number, N.
Similarly, they realized that it was easy to calculate
M in equation 4 given the values of C, N, and most
importantly, D, but far more arduous to calculate
the value of D in equation 4 given the values of C,
N, and M. These two utilizations of trapdoor one-
way functions in RSA encryption are what make it
so formidably strong and currently unbreakable
without a quantum computer.13

In the case of decryption through either semi-
prime factorization or logarithmic properties, an
immense number of iterations are required to
finally attain the decryption key, D. In the case of
semi-prime factorization, if every integer less than
the semi-prime number, N, and greater than or
equal to two was tested to see if it divided evenly
into N, the number of iterations required would be
N – 2. If N is a huge semi-prime number that is
hundreds of digits long, the number of iterations
required to factor N would be two subtracted from
the huge semi-prime number. While it is true that
not all the numbers less than N would have to be
assessed if it was certain that N was semi-prime
(because this would narrow the numbers that
needed to be tested down to only prime numbers),
if access to a large bank of prime numbers is not
unattainable (as in this project), all integers greater
than or equal to two and less than N would still
have to be tested to see if they divide evenly into
N, making the expression for the amount of
iterations needed to factor N in this project N – 2.
In the algorithm presented for factoring N in this
manner, time complexity is O(N). In the case of
decryption through logarithmic properties,
��("#$%)∗(����

� iterations are required to acquire D.
Because the formula for solving for D through

11

I I I I

I I I I

I I I I

Georgetown	Scientific	Research	Journal	

logarithmic techniques can be simplified to
equation 6, where “NMultiplier” is the increasing
integers the message-interceptor multiplies N by
to achieve different modular relationships that will
still yield the secret message, M, “NMultiplier” can
be isolated and solved for to attain the number of
iterations it would take to solve for D. The
following demonstrates the process of isolating
“NMultiplier” from the equation D =
log(N*NMultiplier + M)/log(C):

D = log(N*NMultiplier + M)/log(C)
D*[log(C)] = log(N*NMultiplier + M)
���
��
���	��� = N*NMultiplier + M
���
��
���	��� – M = N*NMultiplier

NMultiplier = ����∗����(�)������� (equation 7)
By solving for “NMultiplier”, the number of
iterations needed to calculate D through
logarithmic techniques has been calculated to be
����∗����(�)������

� . Because this program allows a
maximum of one million iterations to compute D
in this manner, the associated time complexity is
less than O(1000000).
 The purpose of this research study is to discuss
the function of a program built using Python that
calculates the decryption key using semi-prime
factorization as well as the logarithmic method.
Further, the program calculates the number of
iterations required to calculate D using either of
these methods, indicating the efficacy and
advantageousness of using one method over the
other in different circumstances. This research
study will delve into explaining the code written in
the program and how it contributes to achieving
the end result of decryption as well as the number
of iterations derived necessary to calculate D using
either of the aforementioned methods, being that
of semi-prime factorization or logarithms.

2. Materials
2.1 Required Materials:
 Python programming system installed on
MacBook laptop or other personal computer,
complete with IDLE and running module.
Access to Python’s “math” module located in
Python’s standard library. The module includes
mathematical functions necessary to the operation
of the program.
2.1 Recommended Materials:
 Access to a computational knowledge/answer
engine like Wolfram Alpha used to initially verify
the accuracy of the results obtained from the
program.14

12

Georgetown	Scientific	Research	Journal	

2. Methods/Procedures

Figure 1. Code script

3.1 The Code Behind Semi-Prime Factorization
to Calculate D (Lines 1-47)
3.1.1 Factoring N
 In lines 3 – 9, the program asks for a semi-
prime input which it then sets to the variable N.
The program is designed to test all integers less
than N but greater than or equal to two to
determine whether they divide evenly into N. An
integer is a factor of N if the remainder of N
divided by said integer equals zero. The integers
that do divide evenly into N are deemed to be
factors of N and are appended to a list called
“NFactorsList”.
 In lines 10 – 20, the program forces another
input to be given for N if the first input is not a
semi-prime number. If the length of NFactorsList
is only four, this indicates that N is a semi-prime
number because semi-prime numbers only have
four factors: one, the semi-prime itself, and the
two prime numbers multiplied together to attain
the semi-prime number.
 In lines 21 – 25, after ensuring a semi-prime
input for N, the program sets the variables P and
Q to the two prime numbers that N is divisible by.
3.1.2 Factoring 𝜑𝜑N
 In lines 26 – 27, the program sets the variable
PhiN to (P – 1)*(Q – 1) based on the mathematics
described in the introduction for the calculation of
𝜑𝜑N.
3.1.3 Generating a public key value for E
 In lines 34 – 40, the program initializes a list
called “PhiNFactorsList” that lists the factors of
the value of 𝜑𝜑N by testing which integers are
greater than two but less than 𝜑𝜑N and yield a
remainder of zero when divided into 𝜑𝜑N.
 In lines 41 – 42, the program initializes a list
called “PrimesLessThan100List” which lists all of
the prime numbers less than 100 and also
initializes that variable E by setting it to a
placeholder value of 1.

13

11"°"'1m"""
2 l'nnl "IJIUtYl'l1O, lllllOUUJI Sl'.MJ-l'IU.\IE fAt:l'ORJZA'llO~
l lnltl21l2tVl!Uble, •u<er-!lMD imOJlOrinpn
4 lmtiali:a: li>l. •-Li>t• 1, N
5Slartlooo
6
7
8

forllll-,1m111UtC{2.Nl
lfNm>di•O

AddllO :F>aonl.J<t
9 End loco
IOS!anlooo
11 \\bile 1eqiib ofNFoctcnlJg ,- 4
12
ll

N • """-¢>""' in"!l"I' &,pa
Dclc,c NFa:unLi,i

u
15

Addl,NioNFaamList
Sbnloop

16
17
18
19
20Endloop
21 Siar, b-c,
?2
23
24
2.1

Endloop

For inlq,cn i in n1f1P.C (2. N)
If modi 0

For lm'll'ff I In 111¥tC (2, N)
If ""'1i-O

lnitiolize\'•riollleQ i
fni1lltlin: ,.uiatE P • NK)

Add i IO NFanli>t

26 lrumlrze ,onollle l'hlN (P 1)'(0 I)
27 End loop
28 lcitimr "'W1H Pt-quals • "P •"
291citimr"'"'M~-"Q-"
JO lru1labz£ Sl!102 I,_,~. -,'In N ••
JI 1'nn1 l'lxilals followed by I'
32PrimQ,quakfol1-dbyQ
Jl Prim Plu,~ual, fol.._.. by Pili:
34 lnitializc li,t l'lliNFIICIOnli,t - I. l'bil
351Jcktc clanall, 0-2 m l'lnNfllda'SLl5t
.16Sun loop
17
38

Forim'!P'lln~(2,l'l!IN)
lfl'h,,"lmodi•O

39
40Endloop

AddilOl'bil IC10rW5I

41 lnitlallzc (jg Pr!mesLestlb:lnlootJg • 2, 3, 5, 7, II, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 73, 79, 83, 89, 97
42 lnitialw:m.tblc E-1
-OSian loco
44
4.~
46
,fl

48
49Fm•up

ll'bileE•I
lfflN dcmcnof'Prina.f ~,Thant(k)(jsi is nn1 in Phi1'"Factordi~

E- firq clara11 rlPrimcd °''ThlnlOOl j~
Else

Delele lir.;t elemOlll of PrimosLesslbonlOOList

!:4) lnitiali1e 51:~ r-.a,nk -~-,.
51 l'nnl !:,cpols followed by E
52 lnitializc ,'Driable P!u,~1u!tipller
Sls..t~
~
5S
561:ndloop

111,ilc: (((l'h;s:',lull~ia'PhN) + l)IF.) m-.1 1 dur,; rwl apnl 0
P!u,'c\tllll>her Plu.~Mulbpbor+ I

~ lcitimr ma1bk D • ((P!,L"Mdtiplicr'Pbi),,i + I)'1!
58 lcitimr "'W1H ~--o-"
'!D l'nnl UoQuab fol1-d by u
60 l'nnl "OOUlYl'llO:S 'lllR()IJ(j]I LUGARIUL\l!>~
61 lnitlallzcwrublc M=U!ff-¢,ffllm-lnpn
61 lmtiilli:« v&blt- C • M r.mt'd tu I.Ir E pw,a- all au! N
6l lnitializc lllrinR Moctuab • "Scatt mcssa,;c • •
641Mlabz£ Sl!102CcciuAl,•"l:nc:mllodlllWllllC ••
65 Prim~ fblmod by M
<,6 Prim Caiwl, folk>wod by C
67 lnitializc wt Noo!ntc,.aDLi31 • I, 2
68 Delde all elemom or Nonlnlqpl)Li<l
69 lnitlallzc wrublc :Multiplier• I
10 lnitiali,c ..,;.,i-, io,J)lr.-lop{C)
71 Slanlooo
72 1111ile lultiplierdoesoot~ IOIXXKX>
73 lf((loj(N•, .!ultiplier+M))'!IOR()JC))mod I doesDOIOQualO
74 AM((icftN' .fultiplia+M)~)10 l.._nl.is1
'IS iltiplia-1,'\luhiplia + 1
71> Else

D2 ((iot(N'NMultiplier•M)}~) 77
711Fmh~
791f02-1
IIO Pnnl ·u More thoo • rmllm 11er.111mS io col......_.
81 Else
82 PrintD2
Ill Pri,. ,IOW MA rmRA11C1'."l""
84 lrutlall2o stnn2 lbrouobSan1l'runol'IICt"'120b0n "lleraoons uswt sam oruno fac1onzlwon •
as l!!ltl2ll2r RriDJ! ~ = ·,- U!fflll lotlarithms = •
86 lcitimr .-.-ia,blc l1er,6tnM•Sc:uiPrim:Faruriatiw • N -2
117 l'nnl 11rcqd,SamJ'nm:l'ICIOnlll!JOO follov,,:d by l1a11KmVIIScmJ'nm:l'aclaUllllOll
8111Mlabz£V1Nblcl1a0110mVi&Lol>•{(I0IOUx:(ioltOll,~un-Ml'N
89 Prim lll'OUJ!hu,pllhm fblm'ed by ltmdoosViJLoll'

Georgetown	Scientific	Research	Journal	

 In lines 43 – 49, the program generates a value
for E, which must be greater than 1, less than 𝜑𝜑N,
and share no common factors with 𝜑𝜑N. The
program cross-checks values in the
PrimesLessThan100List against values in the
PhiNFactorsList until it finds a value in the
PrimesLessThan100List that is not in the
PhiNFactorsList, which it then sets it to the
variable E. By checking primes as possible values
for E against the factors of 𝜑𝜑N, the program
ensures that whatever value it picks for E shares no
common factors with 𝜑𝜑N.
3.1.4 Generating D
 In lines 52 – 56, the program sets a variable
called “PhiNMultiplier” to 1, which will act as
𝜑𝜑NMultiplier in equation 5. While D does not
equal an integer solution, the program
continuously adds 1 to the value of
PhiNMultiplier. When PhiNMultiplier iterates
enough that it yields an integer value for D, the
program sets D to �𝜑𝜑N*�𝜑𝜑NMultiplier + 1)/E,
where 𝜑𝜑NMultiplier represents the number of
iterations it took to yield an integer solution for D.
3.2 The Code Behind Logarithmic Techniques to
Calculate D (Lines 48 – 71)
 In lines 61 – 62, the program asks for an
integer input and sets it to the variable M. It then
encrypts M by raising it to the value of E, dividing
the entire expression by N, and taking the modulus
of the division, which is C, the ciphertext message.
In lines 67 – 82, the program initializes a variable
called “NMultiplier” to 1 which acts as
NMultiplier in equation 6. Because Python has a
limited capacity for running large numbers of
iterations, the program continuously adds 1 to
NMultiplier until NMultiplier = 1000000 (the first
million iterations) instead of until D is an integer.
When NMultiplier = 1000000, although D might
not be an integer, the program still cuts off at this
point and prints that D takes more than one
million iterations to calculate. All non-integer
numbers resulting from log(N*NMultiplier +

M)/log(C) are appended to the list
“NonIntegerDList” and stored.
3.3 The Code Behind Iterations for Semi-Prime
Factorization to Calculate D and Logarithmic
Techniques to Calculate D (Lines 72 – 80)
 In lines 86 – 89, the iterations for decryption
using semi-prime factorization and for decryption
using logarithmic techniques are both calculated
using the expressions N – 2 and ��("#$%)∗(����� ,
respectively (see introduction of derivation of
iterations). The program then prints the number
of iterations needed in either case, allowing for
quick comparison of either method’s effectiveness
in different circumstances.
4. Results

Figure 2. Program yield

 The creation of the Python code described on
the previous pages (Figure 1) resulted in a program
that, when run, yielded the above result (Figure 2).
Lines 1 – 9 print each of the values necessary to
calculate the decryption key, D, through semi-
prime factorization. In line 2, the program asks for
a semi-prime number input. If a number that is
not semi-prime is inputted, as in Figure 2 when
1500 was inputted, the program asks for another
semi-prime value instead, displaying the message
“Your prior input was not a semi-prime number.

14

0 DECRYPTION THROUGH SEMI-PRIME FACTORIZATION

0 Enter a semi-prime number: 1500
0 Your prior input was not a semi-prime number. Enter a semi-prime number: 1820
G Your prior input was not a semi-prime number. Enter a semi-prime number: 143
• p ■ 11
• Q. 13
Q Phi N • 120
0 E • 7
0 D • 103

G) DECRYPTION THROUGH LOGARITHMS

4D Enter a secret message to encrypt: 24
G Secret message • 24
0 Encrypted message • 106
G, D • More than o million iterations to calculate

fD HOW MANY ITERATIONS?

G Iterations using semi-prime factorization ■ 141
4D Iterations using logarithms • 2.8Z597349859519e+Z06

Georgetown	Scientific	Research	Journal	

Enter a semi-prime number:” until a semi-prime
value has been given. When a semi-prime value is
given, this number is factored into its constituent
factors, P and Q, which are then printed. 𝜑𝜑N is
then calculated by plugging P and Q into the
expression (P – 1)*(Q – 1) and subsequently
printed. Once a public key value E is generated
and printed, D is solved for in equation 2 and
printed. Lines 10 – 14 print the necessary
information to calculate D through logarithms. In
line 11, the program asks for an integer message
M, prints M in line 12, prints C (the value of M,
encrypted) in line 13, and prints D in line 14 by
solving for it in equation 4. However, in all the
times that the program has been run, it has never
been able to calculate D through logarithms due to
the fact that it would take an incredible amount of
iterations to do this. Instead, the program prints,
“D = more than a million iterations to calculate” if
it cannot calculate D through logarithms in under
a million iterations. Finally, in lines 15 – 17, the
program prints the number of iterations that the
program needs to calculate D in either instance.
On occasion, the program will experience an
overflow error when it tries to calculate the
iterations for decryption through logarithms
because Python does not have the capacity for such
huge calculations.
 This project would be economically feasible to
implement as it would not cost anything to
download an app version of this program onto a
mobile device once a graphical user interface has
been created for all of the code that has been
written.

5. Discussion and Conclusions
The research study undertaken was largely

successful because it met all of the objectives
defined in the introduction: to describe the
mathematics of decryption techniques, to create a
program capable of calculating the decryption key
in RSA using two different methods and
calculating the number of iterations required to
accomplish this in either instance, and to explain
the code written in the program and its roles in

ultimately achieving the end result of decryption.
The program has the capacity to calculate the
decryption key through both semi-prime
factorization and through the logarithmic method.
That being said, the logarithmic method almost
always takes too many iterations to feasibly
calculate the decryption key because of the
exponentiation operations involved. However, the
program is still theoretically capable of calculating
the decryption key through the logarithmic
method. The program is also capable of
calculating the number of iterations needed to
calculate D through either method but will at
times experience an overflow error if the number
of iterations needed to calculate D through
logarithmic techniques exceeds Python’s
programming capacity. If the code in this study
can be replicated using more powerful and faster
programs, it would be surmised that D would be
calculated with more rapidity through the
logarithmic technique and the program would not
experience overflow errors. When such errors
occur, exception handling can be used to catch the
errors using Python’s OverflowError. Such an
implementation is provided in the appendix.
 Additionally, there are many other techniques
in existence to factor large semi-prime numbers,
though this program only makes use of one of the
most rudimentary such techniques. The quadratic
sieve and the general number field sieve are two
such integer factorization algorithms that far
outstrip the technique presented in this research.15
 Further, this program could have possible
implementations in the future. Because it is
capable of calculating the number of iterations
needed to obtain the decryption key through either
semi-prime factorization or logarithms, the
program could potentially be used as a starting
point to create an entirely new study in which the
efficacy of either decryption method is compared
when certain variables like the length of the semi-
prime number N or the public exponent E are
varied.

15

Georgetown	Scientific	Research	Journal	

Acknowledgements
I would like to offer my thanks to Dr. Michal

Kolpak and Mr. Quillian Haralson for inspiring
this project, as well as to the myriad other friends,
educators, and family who have given their
encouragement and support in the creation of this
and many other projects.

References
1. Luciano, D., Prichett, G. (1987). Cryptology: from

Caesar ciphers to public-key cryptosystems. The
College Mathematics Journal, 18(1), 2-17.
https://doi.org/10.2307/2686311.

2. Deffs, H., Helmut, K. Introduction to Cryptography,
Principles and Applications 2nd ed. (2007). Springer.
11-31.

3. Ellis, J. H. (1970). The possibility of secure non-
secret digital encryption. UK Communications
Electronics Security Group.
www.cesg.gov.uk/site/publications/media/possnse.
pdf. _________. (1999). The history of non-secret
encryption. Cryptologia 23(3) 267–73. http://
www.informaworld.com/10.1080/0161-
119991887919.

4. Cocks, C. C. (1973). A Note on non-secret
encryption. UK Communications Electronics
Security Group.
http://www.cesg.gov.uk/publications/media
/notense.pdf.

5. Rivest, R. L., Shamir, A., Adleman, L. (1977). A
method for obtaining digital signatures and public-
key cryptosystems. Technical Memo Number
MIT-LCS-TM-082. MIT. http://publications
.csail.mit.edu/lcs/specpub.php?id=81.

6. Holden, J. (2017). The Mathematics of Secrets:
Cryptography from Caesar Ciphers to Digital
Encryption. Princeton University Press. 216.

7. Dence, J. B., Dence, T. P. (1999). Elements of the
Theory of Numbers. Harcourt Academic Press.
156.

8. https://mathworld.wolfram.com/PrimeNumber.ht
ml. Retrieved March 1, 2021.

9. Wagstaff, S. (2013). The Joy of Factoring.
American Mathematical Society. 195–202.

10. Rivest, R. L., Shamir, A., Adleman, L. (1978). A
method for obtaining digital signatures and public-
key cryptosystems. Communications of the
Association for Computing Machinery, 21(2).

11. Gardner, Martin. (1977). Mathematical games: A
new kind of cipher that would take millions of
years to break. Scientific American 237(2) 120–24.
https://simson.net/ref/1977/Gardner_RSA.pdf.

12. Diffie, W., Hellman, M. (1976). New directions in
cryptography. IEEE Transactions on Information
Theory, 22 (6): 644–654.
https://doi.org/10.1109/TIT.1976.1055638

13. Gidney, C., Ekerå, M. (2021). How to factor
2048 bit RSA integers in 8 hours using 20 million
noisy qubits. Quantum 5. (433). arXvix:
1905.09749v3. https://doi.org/10.22331/q-2021-
04-15-433.

14. https://www.wolframalpha.com/
15. Pomerance, C. (1996). A tale of two sieves. Notices

of the American Mathematical Society. 43 (12).
1473–1485.

16

Georgetown	Scientific	Research	Journal	

17

Appendix

 An implementation of the program in pseudocode
is provided below in which exception handling is used
to handle overflow errors.

Georgetown	Scientific	Research	Journal	

18

73

Danya Adams

Danya Adams

 �

GSR Journal
Georgetown Scientific Research Journal

	Table of Contents
	Letter From the Editors
	An Investigation Into theMathematics of DecryptionTechniques in RSA Encryption,With an Implementation in Python
	GPR40 and Postsynaptic NMDAReceptors: A Pair AgainstEpilepsy
	The Burn Behind the Bullet:Understanding Black Mothers’Experiences After Losing a Childto Gun Violence in Washington,DC-Baltimore City MetropolitanRegion
	Cancer Models to Defeat TherapyResistance in Pancreatic DuctalAdenocarcinoma
	Meet the Authors
	Meet the Staff
	Acknowledgments

